
Altreonic NV

From Deep Space To Deep Sea, Push Button High reliability

www.altreonic.com

Eric.Verhulst @ altreonic.com

Present and future challenges in
developing a manycore RTOS

28/02/2010 Altreonic confidential 1

developing a manycore RTOS

Altreonic history

• History goes back to Eonic Systems NV

� Background in CSP and transputers

� Developed parallel DSP Virtuoso RTOS

� Acquired by Wind River Systems in 2001

• Open License Society (R&D) 2004

� Developing a formalized systems engineering methodology

28/02/2010 Altreonic confidential 2

Unified semantics + interacting entities

� Formally developed network-centric OpenComRTOS.

• Altreonic is a spin-off of OLS

The OpenComRTOS goal:
program once, run anywhere

28/02/2010 Altreonic confidential 3

Von Neuman meets Moore
• Moore’s law :

• Functionality potentially increases with geometry shrinking
• We can now easily put milllions of gates on mm2
• Smaller delays => faster clocking

• BUT:
Works best for pipelined processing (= data flow driven)• Works best for pipelined processing (= data flow driven)

• Most applications also have control flow (= multiple flows)
• Meet von Neuman!
• Reuses logic elements on chip
• Stores flow sequence in memory (PC := PC + 1)
• Flow can be dynamically changed (PC’ := PC + X)

• BUT:
• Programming at that level is tedious

Hence: Higher Level programming Languages to add abstraction

28/02/2010 Altreonic confidential 4

• Hence: Higher Level programming Languages to add abstraction
• BUT HLL reflect sequential nature of underlying hardware

• Meet the von Neuman syndrome :
• Programmers think sequentially because of HLL
• Whereas programs are models of a concurrent (real) world
• How to program manycore chips with 2, 4, n (heterogeneous) cores?
• How to program networked systems?

Software doesn’t execute hardware

• If programs are models, we need hardware that
has the same semantics

• Sequences, concurrency, communication, ….• Sequences, concurrency, communication, ….
• Question: which is the common model?
⇒Interacting Entities as metamodel
– Entities:

• can regroup other entities + interactions
• basic entity is sequential
• behaviour is internal

– Interactions:

28/02/2010 Altreonic confidential 5

– Interactions:
• synchronisation points
• behavior as a consequence
• pass (state) information between entities
• can be considered as a subtype of entity

Which formalism?

• Von Neuman machines can be formally modeled
by state graphs

• Useful formal model is CSP process algebra• Useful formal model is CSP process algebra
– Communicating Sequential Processes
– Variations exist (CCS, …)
– = Processes + channels

• Process: sequential segments, connected by channels
• Channels:

– Synchronisation events
– Data passed as side-effect

28/02/2010 Altreonic confidential 6

– Data passed as side-effect

P1 P2

C1
!

?

Synchronising channels in CSP

• CSP semantics only express basic semantics

P1 P2

Intermediate
Process

28/02/2010 Altreonic confidential 7

• What about n-n interactions?
• What about composeability?

– Can be expressed by adding extra processes
– Tedious and had to maintain

• => more abstraction needed

Beyond CSP channels

• Decouple interaction from process behaviour

• Benefits:

P1
P2

Interaction
Entity

28/02/2010 Altreonic confidential 8

• Benefits:
– scalability, orthogonality, location independence

• Question: what are good semantics?

Common interaction semantics

• Most OS have vaguely common types of
services: events, semaphores, mutex, pipes, …

• Is there a better way to define them?• Is there a better way to define them?
⇒ Formalisation

⇒ Result:
– analysis shows that all such services share a

common functionality

28/02/2010 Altreonic confidential 9

common functionality
– differences are small, often based on semantics

The OpencomRTOS “HUB”
• Result of formal modeling (TLA+)
• Events, semaphores, FIFOs, Ports, resources, mailbox,

memory pools, etc. are all variants of a generic HUB
• A HUB has 4 functional parts:• A HUB has 4 functional parts:

– Synchronisation point between Tasks
– Stores task’s waiting state if needed
– Predicate function: defines synchronisation conditions and lifts waiting

state of tasks
– Synchronisation function: functional behavior after synchronisation:

can be anything, including passing data

• All HUBs operate system-wide, but transparently:

28/02/2010 Altreonic confidential 10

• All HUBs operate system-wide, but transparently:
• Virtual Single Processor programming model

• Possibility to create application specific hubs & services!
• => a new concurrent programming model

The generic hub as metamodel

Owner Task

CeilingPriority

Buffer List
Data needs to

be buffered

Prioity Inheritance

For resources

W W

Count

Synchronising

Predicate

Owner Task

Predicate Action

Synchronisation

For semaphores

Synchronisation

For resources

28/02/2010 Altreonic confidential 11

11

L L

Generic Hub (N-N)

T T

TThreshold

Waiting Lists

Similar to Atomic Guarded Actions
Or

A pragmatic superset of CSP

All RTOS entities are “HUBs”

28/02/2010 Altreonic confidential 12

Resulting programming model

28/02/2010 Altreonic confidential 13
OpenComRTOS - OpenVE - OpenTracer
from www.altreonic.com

13

What else is needed?

• Scheduling of processes:
– RTOS => real-time scheduling

• Priority based => priority inheritance needed
• Deadline based: lack of HW support (no cycle counters)• Deadline based: lack of HW support (no cycle counters)

– Implies context switch
– Implies critical sections

• Context switch
• Updating system datastructures
• I/O and status bits

• Communication:

28/02/2010 Altreonic confidential 14

• Communication:
– To pass data and control between task’s context
– To pass data and control between processor nodes
⇒ Latencies, delays and bandwidth
⇒ DMA, drivers, buffering
⇒ Packet based architecture

Critical resources management

• Dynamic applications have resource limits
– => QoS based scheduling

• CPU as resource:
– Priority based scheduling– Priority based scheduling
– But how to avoid trashing?
– But how to avoid monopolistic blocking?

• Priority inheritance is a must
• Task specific cycle counters needed

• Memory as resource
– Fragmentation and protection issues

28/02/2010 Altreonic confidential 15

– Fragmentation and protection issues
• Bandwidth as resource

– Arbitration issues
• Energy as a resource (V and F scaling)

– Dependencies with timing properties

Hub as resources

• Is a hub a resource?
– Semantics allow for “waiting” to synchronise
– => waiting in order or priority
– ? Should we apply priority inheritance?– ? Should we apply priority inheritance?

• Correlate:
– Hub can be used to model resource arbitration
– Trade-off between software overhead and best real-

time performance
– => granularity issue
– => smaller grain size depends on hardware support

28/02/2010 Altreonic confidential 16

– => smaller grain size depends on hardware support

Safety and security properties

• Use cases :=
– Normal cases (see previous slides)
– Test cases
– Fault cases– Fault cases

• Safety cases
• Security case

• Test cases:
– Remains task in predefined resource useage?

• Stack space boundary violation
• Memory access / boundary violations

28/02/2010 Altreonic confidential 17

• Memory access / boundary violations
• Numerical exceptions

Safety and security properties

• Fault cases
– Safety cases

• Rule number one: even faulty software is predictable
• Rule number two: software faults are really hardware faults• Rule number two: software faults are really hardware faults
• How to catch the faults before they become errors?

– Localisation
– Containment
– Correction
– Recover and restart

– Security case
• Maliciously induced faults

28/02/2010 Altreonic confidential 18

• Maliciously induced faults
• More complex as application related

⇒ requires a lot of software
⇒ little support in hardware

Performance goals

• Desktop, games:
– Driven by peak performance
– Throughput driven applications
– Often soft real time– Often soft real time
– Cache speed vs. bulk external memory
– Memory and power secondary issue (220 VAC)

• Mobility:
– Serious constraints in

• Memory, I/O, display, POWER (battery powered)

28/02/2010 Altreonic confidential 19

• Limiting factor is not silicon technology
– But architecture
– Computation/communication ratio (best =1)

• Local: access to memory
• Global: point-to-point latency and bandwidth

Unique technology

• Formalized, straightforward approach:
• Makes safety engineering more affordable
• Full integration of tools

• OpenComRTOS unique features :• OpenComRTOS unique features :
� Network-centric RTOS:
� Transparent distributed processing
� From many-core to WLAN systems

� Formally developed and verified

� Scalable yet very small and complete

� 5 to 10 Kbytes/node

OpenComRTOS was one of the

three final nominees for the:

28/02/2010 Altreonic confidential 20

� Real-time communication support

� Heterogeneous target support

• Open license model: better than open source

Codesize Figures

Service MLX-16 Leon3 ARM XMOS
L1 Hub shared 400 4756 4904 2192 4854

MicroBlaze
L1 Hub shared 400 4756 4904 2192 4854
L1 Port 4 8 8 4 4
L1 Event 70 88 72 36 54
L1 Semaphore 54 92 96 40 64
L1 Resource 104 96 76 40 50
L1 FIFO 232 356 332 140 222

NA 296 268 120 166
Total L1 Services 1048 5692 5756 2572 5414
L1 PacketPool

28/02/2010 Altreonic confidential 21

Code size figures (in Bytes) obtained for our different ports,
compiled with Optimisation Os

Program once, run anywhere

• Ultra low power:
• CoolFlux DSP core (24bit, Harvard)
• Code size full kernel: 2000w PM + 750w data
• Interrupt latency:• Interrupt latency:

• IRQ to ISR: < 112 cycles
• IRQ to task: < 877 cycles

• Multicore capable
• Single chip multicore

• Intel SCC 48core “super computer on chip + NoC
switch” (in development)

28/02/2010 Altreonic confidential 22

22

switch” (in development)
• Heterogeneous networked targets:

• Win32+Linux+ARM+MicroBlaze+XMOS+LEON3+
… demo programmed as single target

A Safe Virtual Machine for C
• Goal:

• CPU independent programming
• Low memory needs (embedded!)
• Mobile, dynamic code• Mobile, dynamic code

• Results:
• Selected ARM Thumb2 instruction set of VM target

• Compactness
• Widely used CPU
• 3.8 Kbytes of code for VM
• Executes binary compiled code

28/02/2010 Altreonic confidential 23

• Executes binary compiled code
• Capable of native execution on ARM targets
• VM enhanced with safety support:

• Memory violations
• Stack violations
• Numerical exceptions

Safe VM set-up

Network infrastructure

28/02/2010 Altreonic confidential 24

24

Conclusion

• We need hardware that executes software
• Even if dominating paradigm is the other way

around (at least for embedded)
• Silicon gates are almost free, so why not use • Silicon gates are almost free, so why not use

them?
• Nevertheless:

OpenComRTOS project has proven that a universal
concurrent programming paradigm works:

• Very small code size, yet very scalable
• Heterogeneous for CPU and communication media

28/02/2010 Altreonic confidential 25

• Heterogeneous for CPU and communication media
• Greatly due to formal(ised) development

www.altreonic.com

Eric.Verhulst @ altreonic.com

